## The Community Carbon Reduction (CRed) Program and Carolina North

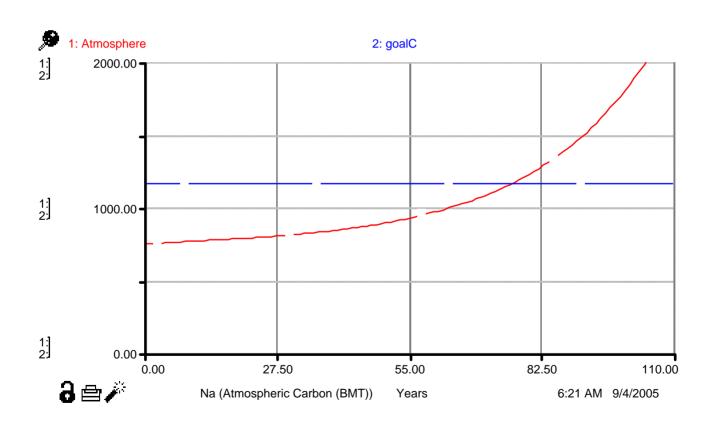
Doug Crawford-Brown and the CRed Team Institute for the Environment UNC-Chapel Hill

#### Background

Environmental points in two directions

Energy use

points in two directions


### Background: Communities must meet legitimate needs of citizens





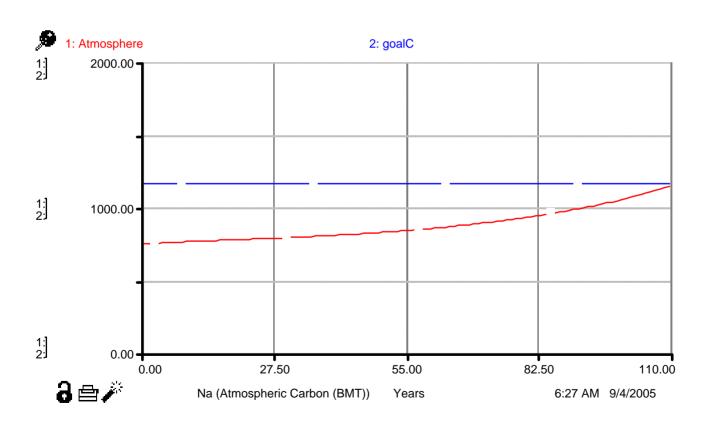


### But in meetings these needs, carbon dioxide is released



### Chapel Hill today




Approximately 22 metric tons per person per year

### Cambridge today



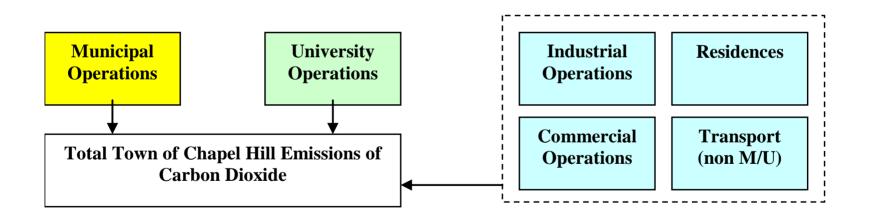
Approximately 11 metric tons per person per year

### At least one government has agreed to a policy of 60% reduction

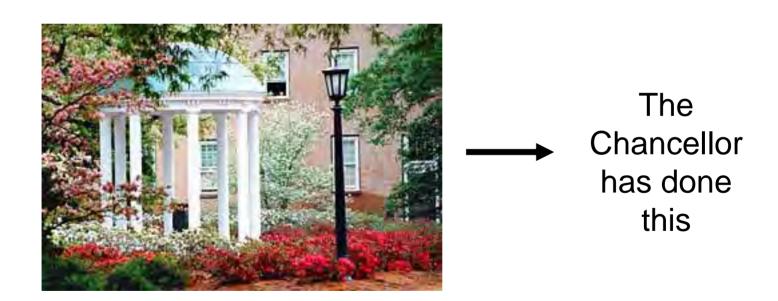


#### The solution?

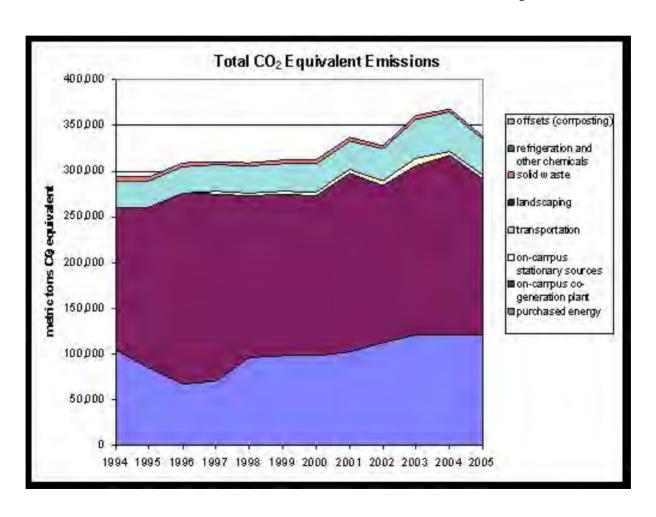





#### Dividing up the causes and solutions




Political regions
Municipalities
Energy sectors
Institutions
Individuals


### This is a Joint Commitment by UNC-Chapel Hill and the Town Offices



### Step 1: Agree to become a CRed partner site



### Step 2: Create a carbon dioxide emissions inventory



#### Creating boundaries of the system

External Energy

On-Site Energy

On-Site Fleet

Employee Commutes



Waste Generation Embodied Carbon

Landscaping

Refrigerants

## Step 3: Using the inventory, identify the activities leading to the largest emissions

- 121334 metric tons per year from purchased electricity consumption (Duke Power);
- 170650 metric tons per year from on-campus co-gen operation;
- 4097 metric tons per year from on-campus stationary sources;
- 38579 metric tons per year from transportation (campus fleet, commuting);
- 88 metric tons per year from landscaping;
- 3465 metric tons per year from solid waste;
- 21.7 metric tons per year from refrigerants and other fugitive gases;
- 140.9 metric tons per year of offset from composting.

## In even more detail to the extent possible

| Fuel           | End Use          | Percent of Total |
|----------------|------------------|------------------|
| Electricity    | Space heating    | 2.5%             |
|                | Space cooling    | 10.6%            |
|                | Water heating    | 3.2%             |
|                | Ventilation      | 4.0%             |
|                | Cooking          | 0.6%             |
|                | Lighting         | 26.4%            |
|                | Refrigeration    | 3.2%             |
|                | PCs              | 1.6%             |
|                | non-PC equipment | 3.6%             |
|                | Other            | 16.9%            |
| Natural gas    | Space heating    | 8.2%             |
|                | Space cooling    | 0.2%             |
|                | Water heating    | 3.2%             |
|                | Cooking          | 1.4%             |
|                | Other            | 7.4%             |
| Distillate oil | Space heating    | 1.5%             |
|                | Water heating    | 0.4%             |
|                | Other            | 1.5%             |
| Other fuels    | Misc             | 3.7%             |
| Total          |                  | 100.0%           |

## Step 4: Identify short, medium and long-term strategies to reduce emissions, focused on these activities

- **Short-term**: no initial cost
- Medium-term: payback period of 3-5 years
- Long-term: perhaps no payback; perhaps requires partnerships

#### Questions to ask...

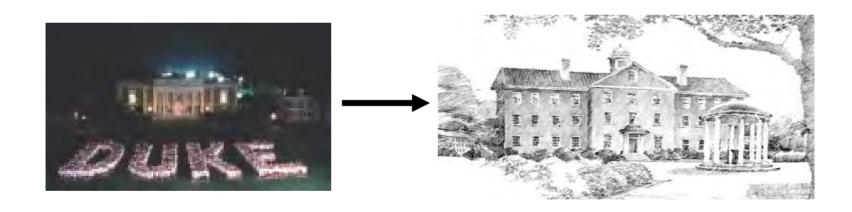
- Do I need the square foot of space?
- If I do, how energy efficient is it?
- Regardless of energy efficiency, how will I get the energy to the point of use?
- Regardless of how I get it there, what will be the fuel I use?
- Regardless of emissions from this fuel, what is the capacity of the site to reabsorb some of these?

# Step 5: Develop a pledge rooted in these strategies and submit that pledge on the CRed web site (www.cred-uk.org; www.cred-us.org)










Step 6:
Implement those strategies over whatever timeline you specify

### Step 7: Assess progress towards the goal each year or two

- 121334 metric tons per year from purchased electricity consumption (Duke Power);
- 170650 metric tons per year from on-campus co-gen operation;
- 4097 metric tons per year from on-campus stationary sources;
- 38579 metric tons per year from transportation (campus fleet, commuting);
- 88 metric tons per year from landscaping;
- 3465 metric tons per year from solid waste;
- 21.7 metric tons per year from refrigerants and other fugitive gases;
- 140.9 metric tons per year of offset from composting.

#### Total emissions or per capita?



**Energy and** Environment at Carolina Energy Sciences North Environment Greening the **SEEED** and Health Campus Policy, Planning and Economic Development